
Journal of Statistical Planning and
Inference 134 (2005) 549–567

www.elsevier.com/locate/jspi

Confidence sets for the maximizers of intensity
functions

Andreas Futschika,∗, Wen-Tao Huangb
aDepartment of Statistics, Vienna University, Universitätsstr. 5/9, A-1010 Vienna, Austria

bDepartment of Management Sciences and Decision Making, Tamkang University, Tamsui, Taiwan, 251,
Republic of China

Received 14 May 2002; accepted 17 April 2004
Available online 21 July 2004

Abstract

Identifying times or time intervals when the intensity function of a Poisson process is maximal
is important in a variety of practical problems, for instance in traffic control or with planning issues
involving customer arrivals or accident occurrences. For this purpose, we propose confidence sets that
are intuitive and easy to obtain, which makes them practicable for a quick exploratory data analysis.
They may also be used in the context of mode estimation for probability densities. In the current
literature, confidence sets for the mode are based on the assumption of an—at least locally—unique
mode. In contrast, our approach retains the coverage probability even if the underlying intensity or
density has a flat top. We even allow the intensity to be constant in the extreme.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Various practical phenomena lead to realizations of inhomogeneous Poisson processes.
A frequent goal is to obtain information concerning the unknown intensity function. For
this purpose nonparametric estimates for intensities have been proposed by several authors,
including Diggle (1985), Diggle and Marron (1988), and Leadbetter and Wold (1983).
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Applications have been considered, e.g., to data concerning the occurrence of explosive
volcanism (Solow, 1991) and to coal mining disaster occurrences (Diggle and Marron,
1988). In these applications, a strong dependence of the estimates on the bandwidth has
been observed which makes them difficult to interpret. It is therefore of interest to find
out whether interesting properties of the estimated intensity are mere artifacts or actually
present. For this purpose,Cowling et al. (1996)proposed methods to construct uniform
confidence bands. They investigate the classical coal mining disaster data (seeBarnard,
1953; Cox and Lewis, 1966), and use the fact that the lower confidence bound at the
year 1870 exceeds the upper confidence limit after 1900 to confirm a decrease in disas-
ter occurrence after 1900. Instead of this indirect approach, we focus on the direct con-
struction of interval estimates for the point(s) where the intensity is maximal. Possible
applications of such interval estimates include the identification of times where customer
arrivals, accident occurrences or traffic intensities are typically maximal. An illustrating
application to ship arrival data at Keelung harbor (Taiwan) will be discussed in more detail
in Section 5.

As detailed below, our considered problem is related to that of mode estimation for
probability densities. Mode estimation has been considered by several authors. Here, we cite
only some of the relevant literature. For unimodal densities,Parzen (1962),Chernoff (1964),
Romano (1988), andGrund and Hall (1995)investigate the use of mode estimates based on
kernel density estimates. More recently, mode trees have been proposed byMinnotte and
Scott (1993)as visual tools for identifying possible modes.Minnotte et al. (1998)considered
“mode forests” as a possible robustification of mode trees. Finally, tests for unimodality
or, more generally, concerning the number of modes have been investigated for instance
by Hartigan and Hartigan (1985), Silverman (1981),Mammen et al. (1992)as well as by
Cheng and Hall (1998). While all proposed methods assume either one or a finite number
of modes, our proposed confidence sets also work with densities and intensities that have a
flat top. The assumption of a finite number of extremal points is frequently reasonable in the
density estimation context, but it is unclear whether the assumption is justified in the context
of Poisson processes, where periods of constant intensity often seem plausible. Therefore,
we do not assume unimodality and even admit the possibility of a constant intensity in the
extreme case. With multiple modes, our proposed confidence sets identify those that are
global extremes.

We will now state our problem more formally.Assume that we observe an inhomogeneous
Poisson processX(t) on a time interval[0,m] whose intensity function�∗(t) has period 1.
While periodic intensities are encountered in many situations (think e.g. of daily, monthly
or yearly fluctuations), the assumption of periodicity is not essential in the derivation of
asymptotic coverage probabilities. It is easy to verify that our asymptotic results can also
be obtained by considering�∗

l = l� for some density� and lettingl → ∞, an approach
chosen e.g. inCowling et al. (1996).

Our goal is to construct confidence setsC for the point(s) where the intensity function
�∗ is maximal using theN = X(m) observed jump points ofX(t) on [0,m]. Let S denote
the argmax set of�∗, i.e.

S =
{
t ∈ [0,1] : �∗(t)= sup

s
�∗(s)

}
.
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To avoid trivialities, assume furthermore that�∗ is not a.e. equal to zero. Then the intensity
density

�(t)= �∗(t)∫ 1
0 �∗(s)ds

, 0� t�1,

is well defined and both�∗ and� share the same argmax-setS. Thus one may equivalently
construct confidence sets for the argmax set of�. To ensure wide applicability, we will
derive our confidence sets under fairly weak smoothness conditions and assume that� is
locally (in a neighborhood ofS) Lipschitz continuous, i.e. that there are� and�>0 such
that

|�(t)− �(u)|��|t − u| for all t, u ∈ S�, (1)

whereS� := ⋃
t∈S U�(t) andU�(t) := (t − �, t + �). This permits the underlying intensity

to exhibit kinks. Assume furthermore

sup
s∈[0,1]\S�

�(s)< �m (2)

with �m := max0� s�1 �(s), a condition satisfied automatically for continuous intensities.
We will denote the class of all intensity densities satisfying (1) and (2) byL�(�).

Our goal is to construct confidence sets that have the correct asymptotic coverage prob-
ability, i.e. that satisfy

lim inf
m→∞ P(t ∈ C)�1 − � for any t ∈ S. (3)

To keep notation simple, the dependence ofC onm is suppressed here and subsequently.
Often each period of observation[i, i + 1] can be partitioned into equally spaced subin-

tervalsIj (1�j�k) chosen to have natural interpretations. (Think of days, hours, etc.) In
such a situation, it is often of interest to identify those intervals where the expected number
of occurrences of events is maximal. Consider for instance our example on ship arrivals,
as discussed in Section 5. If a more uniform distribution of ship arrivals is desired, a first
step to achieve this would be to discourage ship arrivals during peak hours, for instance by
increasing the harbor fees. Similar goals are of interest in traffic control. To achieve this,
the following alternative confidence requirement is useful. Let

S∗
k =

{⋃
Il :

∫
Il

�∗(s)ds = max
1� j�k

∫
Ij

�∗(s)ds

}
.

Then the requirement

lim inf
m→∞ P(Ilk ⊆ C)�1 − � for any nonrandom sequenceIlk ∈ S∗

k (4)

provides confidence sets for those time intervalsIlk where the expected cumulative intensity∫
Ilk

�∗(s)ds

is maximal.
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In the following, we propose confidence sets both for conditions (3) and (4). We consider
fast and simple construction rules, based either on a partition of the observation interval or
on kernel density estimates in Sections 2 and 3, as well as more elaborate confidence sets
that use simulated quantiles.

The confidence sets are constructed by first considering the problem conditional onN=n,
and then transfering the obtained results forn → ∞ back to the original Poisson model
by applying the strong law of large numbers onN. It can thus be immediately verified
that our results carry over to the density estimation context when i.i.d. observations are
available.

Section 4 contains a simulation study in which the proposed confidence sets are com-
pared and the actual coverage probabilities are investigated both for smooth and nonsmooth
intensities. We look into the effect of data-based bandwidth selection, and the issue of
undersmoothing versus the use of estimates for the Lipschitz bound�. We also compare
the proposed confidence sets to sets obtained by using uniform confidence bands. For this
purpose, we consider bootstrap confidence bands proposed inCowling et al. (1996), as
well as the uniform bands proposed byHall and Titterington (1988)that do not assume any
smoothness besides Lipschitz continuity.

2. The partitioning approach

Consider the partitionI1, I2, . . . , Ik of [0,1], whereIj = ((j −1)/k, j/k] for 1�j�k.
In practical applications, it is often natural to choosek such that the resulting intervalsIj
correspond to easily interpretable units, like days or hours. Since the achievable resolution
depends also on the amount of available data, we assumek to be an increasing function
of N .

Let

Nj =
m−1∑
l=0

[X(l + j/k)−X(l + (j − 1)/k)]

denote the number of jumps falling into eitherIj or one of its translatesIj + l. Our proposed
confidence sets are constructed to contain all those subintervalsIl whereNl is within a
certain distance of max1� j�k Nj . For this purpose, we use the statistics

Dl = max1� j�k Nj −Nl

(max1� j�k Nj )
1/2

and

D∗
l = max1� j�k Nj −Nl − bkN/(2k2)

(max1� j�k Nj )
1/2 ,

wherebk is an estimate of the Lipschitz constant� defined in (1). Possible choices ofbk
will be discussed later in this section.
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More specifically, our confidence set for the regions of maximum cumulative intensity
is defined as

C(P)c =
⋃
j∈Jc

Ij , (5)

with Jc = {l : Dl�q(k,1 − �)} andq(k, �)= (2 log k)1/2 + �−1(�).
A confidence set for the maximizers of the intensity itself is provided by

C(P) =
⋃
j∈J

Ij ,

whereJ = {l : D∗
l �q(k,1 − �)}.

Statements (i) and (ii) ofTheorem 1 below imply immediately that the confidence setsC
(P)
c

andC(P) guarantee the desired coverage probabilities (4) and (3) asymptotically. Moreover,
it is shown that the coverage probabilities are attained exactly in the limit for constant
intensities and for intensities whereS contains an interval. We need the following rather
weak assumptions.

(A1) GivenN=n the number of cellsk=k(n) is chosen such thatk → ∞ andnk−1 → ∞
asn → ∞.

(A2) log k
log log n → ∞, and k(log n)4

n
→ 0 asn → ∞.

(A3) � ∈ L�(�).
(A4) The estimatebk of � satisfies(� − bk)(N/k

3)1/2 → 0 in prob.

Theorem 1. Suppose that assumptions(A1)–(A3) hold and that the below mentioned se-
quenceslk do not depend on random quantities other thank.

(i) If the sequenceIlk satisfiesIlk ∈ S∗
k for all k, then

lim inf
m→∞ P(Dlk − [2 logk]1/2�x)��(x) for arbitrary x.

(ii) If lk is chosen such thatIlk ∩ S �= ∅ for all k, and additionally(A4) holds then

lim inf
m→∞ P(D∗

lk
− [2 logk]1/2�x)��(x) for arbitrary x.

(iii) Finally, if the argmax setS of �∗ contains an interval, and for sequenceslk such that
Ilk ∩ S �= ∅ for all k, thenlimm→∞ P(Dlk − [2 logk]1/2�x)= �(x) for arbitrary x.

The proof of the result can be found in Section 6, an alternative proof could be given by
directly approximating the Poisson by the normal distribution.

According to Theorem 1, the bias estimate should satisfy(N/k3)1/2(bk − �) → 0 for
C(P) andC̃(P) to satisfy (3). Obviously, ifk is chosen such thatN/k3 remains bounded,
any consistent estimatebk of � satisfies the required condition. Uniformly consistent kernel
estimates of the derivative (see for instanceSilverman, 1978) are an obvious choice to obtain
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an estimatebk, but they require sufficient smoothness to work. Alternatively, a consistent
estimate of� is obtained by taking the maximal differences

max
1� i�m−1

|�̂n,h(ti+1)− �̂n,h(ti)|/(ti+1 − ti ) (6)

of kernel density estimates�̂n,h(·) on a gridt1, . . . , tm(n) of shrinking maximal width, again
with the accuracy depending on the smoothness of�.

A further alternative approach that does not require estimating� is to setbk=0 and make
the bias negligible by undersmoothing. This is done by choosingk such thatNk−3 → 0 in
probability. This approach has been proposed for instance inCowling et al. (1996).

All these methods to deal with bias carry over to the confidence sets of Section 3 that are
obtained via kernel estimates.

While the above-mentioned confidence sets satisfy our asymptotic requirements, they
turned out to be quite conservative in our simulations. Despite Theorem 1 (iii) this is true
even with uniform intensities at least for our considered sample sizes. Similar effects occur
when uniform confidence bands for density and intensity functions are based on asymptotic
expansions such as those proposed byBickel and Rosenblatt (1973).

In order to improve the actual coverage probabilities of uniform confidence bands, the
use of bootstrap has been proposed byCowling et al. (1996). Whereas the bootstrap seems
to provide good results in this context, analogous resampling methods do not work when
applied toDl orD∗

l . Similar problems have been observed in several situations related to
hypothesis testing. (See e.g.Beran, 1986or Hinkley, 1987, 1988.) As a counter-example in

our situation, consider constant intensities. In this case the pivotal quantityDlk −
√
N
k
�s(�),

where

�s(�) :=
(
max
t

�(t)− �(s)
)
/
(
max
t

�(t)
)1/2

,

equalsDlk , andDlk − [2 logk]1/2 → N(0,1) in distribution according to Theorem 1 (iii).

Let nowD(B)
lk

denote the bootstrap statistic obtained by resampling from the observed jump
points. This is equivalent to resampling method 3 ofCowling et al. (1996). According to
the proposition below, bootstrap fails since neither the distribution ofD

(B)
lk

− [2 logk]1/2
nor that ofD(B)

lk
−Dlk approaches the correct limiting distribution.

Proposition 1. Assume(A1), that� is constant and thatk2+�/n → 0 for some�>0.Then,
for arbitrary sequenceslk, conditional onN = n, and forn → ∞

D
(B)
lk

− 2[log k]1/2 → N(0,2) in distribution

and

D
(B)
lk

−Dlk − (2 −√
2)[log k]1/2 → N(0,1) in distribution.

While further resampling methods have been proposed inCowling et al. (1996), the
essential arguments of the proof do not depend on the specific resampling method. The main
reason for the bootstrap failure turns out to be that the bias of the estimate of maxt �(t) is not
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approximated consistently. An alternative approach would be to usem out of n bootstrap
that is known to work in many situations where the classical bootstrap fails. (See e.g.Bickel
et al., 1997.) It turns out however, that standard consistency results that ensure consistency
of subsampling like those given in Section 2.2 ofPolitis et al. (1999)are not applicable
in our situation. A further alternative approach would be the bootstrap from a smoothed
version of the empirical distribution function.Romano (1988)observed that smoothing can
overcome inconsistency when bootstrapping the mode directly.A similar approach has been
taken byZiegler (2001)in the regression context.

We do not explore the possibilities of subsampling and smoothed bootstrap further here,
but propose to replace the quantityq(k, �) used in the definition ofC(P)c andC(P) by the
quantilesq̃(k, �) obtained by applying the below stated algorithm. The resulting confidence
sets will be denoted bỹC(P)c , andC̃(P), respectively.

Algorithm.

1. Assuming that our sample includesn jump points, calculate the empirical distribution
function	n for the jump pointsX1, . . . , Xn taken modulo one.

2. Calculateti = 	n(i/k) for 0� i�k. (t0 = 0) Let si = ti − ti−1 for 1� i�k.
3. Take k normal random variablesY1, . . . , Yk such thatYi ∼ N(0, si) and letY ∗ =∑

1� i�kYi . Calculate

D̃i = max1� j�k (Yj − sjY
∗)− (Yi − siY

∗)
(maxj sj )1/2

4. Repeat step 3 several (e.g. 10,000) times and calculate the empirical quantileq∗(k, �)
of D̃i . The quantileq∗ can be used as replacement ofq(k) to decide on the inclusion
of interval i into J. Notice that this quantile has to be calculated separately for eachi
(1� i�k).
The algorithm provides a normal approximation forDi under the null hypothesis as-

sumption thatIi ∩ S �= ∅. More specifically, it is easily verified that forN = n,

D̃i = maxj B ◦ 	n(Ij )− B ◦ 	n(Ii)

[maxj Pn(Ij )]1/2
,

where	n denotes the empirical distribution function of the jump points ofX(t) taken
modulo 1, andB denotes a standard Brownian bridge that is independent of	n.

Theorem 2. Under assumptions(A1)–(A3), the confidence sets̃C(P)c satisfy requirements
(4),and under(A1)–(A4) C̃(P) satisfies(3).

3. The kernel-based approach

With the jump pointsXi ∈ [0,1] (1� i�N) of the inhomogeneous Poisson process
X(t) taken modulo 1, the classical kernel density estimate of� is defined as

�̂N,h(x) := 1

Nh

N∑
i=1

K

(
x −Xi

h

)
,
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whereh depends onN . To improve estimation at the boundaries of[0,1], the periodicity
of the intensity function can obviously be exploited.

Under the assumptions of Theorem 3 below, a level 1− � confidence set is given by

C(K) =
{
x :

√
Nh(N)∫ 1

−1 K
2(u)du

maxt �̂N,h(t)− �̂N,h(x)− bhhcK

(maxt �̂N,h(t))1/2
�q(h,1 − �)

}
,

(7)

wherecK = ∫ 1
−1 |u||K(u)| du. Again bh denotes an estimate of�, see Section 2 for a

discussion of possible choices forbh. Furthermoreq(h,1−�)=(2 log h−1)1/2+�−1(1−�).
In order to investigate the coverage probabilities we need the following assumptions.

(B1) The bandwidth sequenceh=h(n) is chosen such thath=h(n) → 0 and nh
log h−1 → ∞.

(B2) The kernelK is chosen to be Lipschitz continuous and to have support[−1,1].
(B3) The estimatebk of � satisfies(� − bk)

(
Nh3

)1/2 → 0 in prob.

Theorem 3. Under assumptions(A3) and (B1)–(B3) the confidence setsC(K) satisfy(3)
asm → ∞.

Arguments analogous to those of the proof of Theorem 2 can be used to show that the
crude approximationq(h,1−�)may be replaced by the following more accurate simulation-
based bound. LetY (t) = h−1/2

∫
K[(t − s)/h] dB ◦ Fn(s). Then, givenN = n, replace

q(h,1 − �) by the 1− � quantile of√
1∫ 1

−1 K
2(u)du

maxt Y (t)− Y (x)

(maxt �̂N,h(t))1/2
.

For practical convenience, the Brownian bridgeB can be replaced by the uniform empirical
process based onn observations.

Another practical issue is the selection of the bandwidthh. Bandwidth selection in the
point process context and its analogies to density estimation is discussed in some detail
in Diggle and Marron (1988). From practical point of view, it seems attractive to choose
the same bandwidth for intensity estimation and confidence sets. This avoids (optical)
contradictions between the curve and interval estimate, even though larger bandwidths are
usually recommended for mode estimation given a sufficiently smooth underlying density.

4. Simulation results

We conducted a simulation study to investigate the performance of our proposed confi-
dence sets and to compare them with sets constructed indirectly from uniform confidence
bands by taking all points at which the upper confidence band exceeds the maximal value
of the lower confidence band. As competitors, we considered the bands proposed byHall
and Titterington (1988)which require only Lipschitz continuity to be valid, as well as the
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resampling based bounds byCowling et al. (1996)that have been derived under further dif-
ferentiability assumptions. More specifically, resampling method 3 ofCowling et al. (1996)
has been used in connection with their confidence bandsB1 and their bias correction via
undersmoothing.

We considered six different intensity functions on[0,1] of different degree of smoothness
and flatness. The corresponding densitiesg1, g2, . . . , g6 are displayed below.

g1
0.0 0.2 0.4 0.6 0.8 1.0

g2
0.0 0.2 0.4 0.6 0.8 1.0

g3
0.0 0.2 0.4 0.6 0.8 1.0

g4
0.0 0.2 0.4 0.6 0.8 1.0

g5
0.0 0.2 0.4 0.6 0.8 1.0

g6
0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

We have takenN = 200 as well asN = 500 as expected numbers of Poisson jumps and
500 simulation runs have been carried out for each intensity. In all simulations, the coverage
probability has been chosen equal to 0.90.

Both for the partitioning and kernel-based approach, we considered the quick and easy
asymptotic critical valuesq(k,1−�) andq(h,1−�), as well as their simulation-based mod-
ificationsq∗(k,1− �) andq∗(h,1− �). The Lipschitz bound� has been estimated accord-
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ing to (6). Alternatively, we considered an undersmoothing approach proposed inCowling
et al. (1996)and replaced the bandwidthsh (cell widthsk) by h/2 (k/2) when calculating
simulation-based critical values. With the kernel estimates, we chose the Epanechnikov
kernel and bandwidths by least-squares cross-validation, seeBrooks and Marron (1991). A
fixed number of cells (k= 10 forN = 200 andk= 20 forN = 500) has been used with the
partitioning approach.

The results are summarized inTable 1. It turns out that all of our proposed confidence
sets outperform those based on uniform confidence bands considerably. The replacement
of q(k, �) by q∗(k, �) reduces the size of the confidence sets, and bias correction by under-
smoothing provides a further significant improvement. According to our simulations, the
coverage probability has been met in all considered situations, except for slight violations
that turned up in some cases with the uniform intensityg1. With g1, the minimum empirical
significance level was 0.86 and occurred withC̃(P)c and forN=200. For all other intensities
the empirical coverage probabilities have always been above the desired value.

The results were analogous both for smooth and nonsmooth intensities. Very often the
partitioning approach worked better than the confidence setsC(K) (and modifications) based
on kernel estimates. This turned out to be the case when the inverse of the number of cells
1/k was smaller than the average bandwidth provided by cross-validation, suggesting that
small bandwidths should be desirable with respect to the size of our confidence sets. We
plan to investigate this issue in future empirical work.

5. Application

One motivation of our paper has been the analysis of ship arrival data at Keelung harbor
(Taiwan). In totaln=79,872 arrivals have been recorded between July 1988 and June 1998.
To provide information for personnel and harbor fee planning, our goal has been to identify
time periods where the arrival intensity is maximal. For this purpose, we considered both
daily and monthly fluctuations. For the monthly fluctuations, we assumed the intensity to
be periodic with a period length of one year. This seems reasonable after correcting for the
Chinese New Year vacation in late January or February (depending on the year), when the
arrival intensity is typically lower. We considered each month separately and present results
for January as an example. Based on a total of 6422 arrivals in January,Fig. 1displays an
estimate of the arrival intensity with multiple local extremes. We used the Epanechnikov
kernel with bandwidthh= 1, the wiggles are caused by the daily fluctuations.

Below we give the confidence setsC(P)c and C̃(P)c for the maximal average intensity
based on a daily partition. The corresponding binned arrivals can be found inFig. 2. (Di-
vide by 10 to obtain average cumulative daily arrivals.) As coverage probability, we have
chosen 1− � = 0.95. As in our simulations,̃C(P)c provides the smaller confidence sets.

Confidence Included days Percentage of
set type cells included

C
(P)
c 2–7, 9–26 31 81

C̃
(P)
c 2–6, 10, 11, 13–15 17, 19–21 48
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Table 1
Average sizes of confidence sets over 500 simulation runs for intensity densitiesg1 to g6

Kernel based Partition based Avg. intensity Uniform conf. bands

n C(K) C̃(K) C̃
(K)
u C(P) C̃(P) C̃

(P)
u C

(P)
c C̃

(P)
c C(HT) C(CHP)

g1
200 1.00 0.99 0.88 1.00 0.98 0.90 0.99 0.86 1.00 1.00
500 1.00 0.99 0.89 1.00 0.97 0.89 0.99 0.86 1.00 1.00

g2
200 0.83 0.66 0.47 0.74 0.55 0.37 0.53 0.36 1.00 0.99
500 0.59 0.49 0.34 0.58 0.39 0.29 0.47 0.30 1.00 0.82

g3
200 0.81 0.68 0.46 0.89 0.67 0.38 0.56 0.37 1.00 1.00
500 0.66 0.55 0.35 0.66 0.48 0.32 0.49 0.33 1.00 0.99

g4
200 0.90 0.76 0.55 0.75 0.58 0.44 0.58 0.43 1.00 0.99
500 0.70 0.61 0.44 0.62 0.45 0.38 0.54 0.38 1.00 0.87

g5
200 0.91 0.77 0.57 0.79 0.59 0.43 0.60 0.42 1.00 0.99
500 0.71 0.62 0.43 0.64 0.46 0.38 0.55 0.38 1.00 0.90

g6
200 0.74 0.59 0.36 0.80 0.59 0.30 0.47 0.31 1.00 1.00
500 0.55 0.45 0.25 0.55 0.39 0.25 0.39 0.26 1.00 0.92

Confidence setsC(·) use asymptotic critical valuesq(·), the setsC̃· use simulated critical valuesq∗(·), the index(·)u refers to bias correction by undersmoothing. The
setC(HT) is based on uniform confidence bands according toHall and Titterington (1988), whereasC(CHP) makes use of resampling based uniform confidence bands
according toCowling et al. (1996).
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Fig. 1. Estimated intensity function for ships arriving at Keelung harbor in January.
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Fig. 2. Average daily number of ship arrivals in January.

With a bandwidth of 1 (day) and the undersmoothing approach, the kernel-based approach
provided a still smaller confidence set, including only 21% of the month. The reason of the
improvement can be found in the tendency to exclude less popular arrival times during a
day when the kernel estimate is evaluated on a fine enough grid.

A look at the histogram of hourly arrivals inFig. 3 (cumulative over the whole dataset)
reveals high arrival intensities in the morning hours. Both partitioning-based confidence sets
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Fig. 3. Total number of arrivals for each hour in the dataset.

C
(P)
c andC̃(P)c single out the hour of 9:00–10:00 a.m. as the period of maximum intensity.

This is maybe not surprising in view of the harbor fee policies that include an extra day of
harbor fees for ships arriving before 9:00 a.m., causing affected ships often to wait before
entering the harbor.

6. Theory

This section contains the proofs of the presented results. The proofs utilize the fact that
conditionally onN = n, the jump pointsXj have the same joint distribution as the order
statistics of a sample ofn independent observationsX1, . . . , Xn from density�.

For later use, let	 and P be the cumulative distribution function (cdf) and probability
measure belonging to�. Let furthermore	n (and Pn) be the empirical distribution function
(and measure) of a sample of sizen from �. Also, let	̃n =√

n(	n − 	) andP̃n =√
n(Pn −

P) denote the corresponding empirical processes. DefineBn(I) := Bn(b) − Bn(a) for
Brownian bridgesBn and intervalsI =[a, b]. For	n, let as usual	n(I )=[	n(a),	n(b)].
We first focus on the partitioning approach.

6.1. The partitioning approach

Lemma 1. On a suitable probability space, there is a sequence of Brownian bridgesBn
such that for arbitrary sequencesof partitionsI1, . . . , Ik(n), for arbitrary sequenceslk=lk(n)
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and asn → ∞

max
j

Pn(Ij )− Pn(Ilk )�dlk + n−1/2
[
max
j

Bn ◦ 	(Ij )− Bn ◦ 	(Ilk )
]

+ O

(
(log n)2

n

)
a.s. (8)

Furthermore

max
j

Pn(Ij )− Pn(Ilk )�dlk + n−1/2
[
max
j

Bn ◦ 	n(Ij )− Bn ◦ 	n(Ilk )

]
+ Rn, (9)

wheredlk = maxj P (Ij ) − P(Ilk ) andRn = O

([
(log n)2(log log n)

n3

]1/4
)
a.s. For constant

intensitiesdlk = 0,and“ �” may be replaced by“ = ” in (8) and(9).

Proof. It is verified immediately that

max
j

Pn(Ij )−Pn(Ilk )� max
j

P (Ij )−P(Ilk )+n−1/2
(

max
j

P̃n(Ij )−P̃n(Ilk )

)
(10)

with equality for constant intensities.
According to the strong approximation due toKomlós et al. (1975), there is a sequence of

Brownian bridgesBn on a suitable probability space such that lim supn ‖	̃n−Bn ◦	‖∞ =
O
(
(log n)2

n1/2

)
a.s., and therefore

max
j

P̃n(Ij )− P̃n(Ilk )= max
j

Bn ◦ 	(Ij )− Bn ◦ 	(Ilk )

+ O

(
(log n)2

n1/2

)
a.s. (11)

This gives (8). To show (9) notice that

max
j

Bn ◦ 	(Ij )− Bn ◦ 	(Ilk )= max
j

Bn ◦ 	n(Ij )− Bn ◦ 	n(Ilk )

+ O(‖Bn ◦ 	 − Bn ◦ 	n|∞) . (12)

But by Theorem 5.1.1 ofCsörgő and Révész (1981)and by Theorem 9.25 inKaratzas and
Shreve (1988)it follows that

‖Bn ◦ 	 − Bn ◦ 	n|∞ = O


( (log n)2(log log n)

n

)1/4

 a.s. � (13)

Proof of Theorem 1. Obviously it is sufficient to show assertion (i) conditional onN =n.
Since, conditional onN = n,

Dlk
D=√

n
max1� j�k [Pn(Ij )] − Pn(Ilk )

[max1� j�k Pn(Ij )]1/2
, (14)
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where
D= means equal in distribution, we may equivalently show that

lim inf
n→∞ P

(
√
n

max1� j�k [Pn(Ij )] − Pn(Ilk )

[max1� j�k Pn(Ij )]1/2
�
√

2 log k + x

)
��(x). (15)

Now according to Lemma 1 and forIlk ∈ S∗
k ,

n1/2
(

max
j

[Pn(Ij )] − Pn(Ilk )

)

� maxBn ◦ 	(Ij )− Bn ◦ 	(Ilk )+ O

(
(log n)2

n1/2

)
a.s. (16)

Furthermore, by Theorem 9.25 inKaratzas and Shreve (1988),

lim sup
k→∞

max
j

Bn ◦ 	(Ij )�
(

2�m log(k)

k

)1/2

+ O((k log(k))−1/2) a.s. (17)

AlsoBn◦	(Ilk ) is normallyN(0,
2
k) distributed, where
2

k=	(Ilk )(1−	(Ilk ))=�m/k(1+
o(1)).

For the denominator we have that,

[max
j

Pn(Ij )]−1/2 = max
j


[P(Ij )]−1/2

[
1 + n−1/2 P̃n(Ij )

P(Ij )

]−1/2

 , (18)

with maxj P(Ij ) = �m/k + O(k−2). Furthermore, letj∗ be chosen such that Pn(Ij∗) =
maxj Pn(Ij ). Then, P(Ij∗) = �m/k(1 + oP(1)), and according toShorack and Wellner
(1986, p. 542), it follows that

P̃n(Ij∗)

P(Ij∗)
= O

(
k

[
log k

k

]1/2
)

a.s.

By plugging in the expanded denominator, we get

√
n

max1� j�k [Pn(Ij )] − Pn(Ilk )

[max1� j�k Pn(Ij )]1/2
�(2 log k)1/2 − Vlk + oP(1), (19)

whereVlk = [maxj Pn(Ij )]−1/2Bn ◦ 	(Ilk ) is asymptotically normalN(0,1) distributed.
To prove assertion (ii), notice thatbk provides an asymptotically valid bias bound, if

Ilk ∩ S �= ∅.
For simplicity of notation, we prove assertion (iii) for constant intensities, the case where

S contains an interval is analogous. By Lemma 1, equality holds in (16). Equality for the
denominator follows , since�m = 1. �
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Proof of Proposition 1. Let P∗
n denote the empirical measure of a bootstrap sample. With

T ∗
n =√maxj P∗

n(Ij ) andP̃
∗
n =√

n(P∗
n − Pn), we may write

D
(B)
lk

=
√
n

T ∗
n

(
max
j

P∗
n(Ij )− P∗

n(Ilk )

)

= [T ∗
n ]−1

(
max
j

[P̃∗
n(Ij )+ P̃n(Ij )] − [P̃∗

n(Ilk )+ P̃n(Ilk )]
)
,

where[T ∗
n ]−1=√

k(1+OP([(k log k)/n]1/2)). Now conditionally on the jumpsX1, . . . , Xn
and as in Lemma 1, we may use a strong approximation by independent sequences of
Brownian bridgesBn andB∗

n to obtain

D
(B)
lk

=[Tn]−1
(

max
j

[B∗
n◦	n(Ij )+Bn◦	n(Ij )]−[B∗

n◦	n(Ilk )+Bn ◦ 	n(Ilk )]
)

+ oP(1) (20)

which is equal to

[Tn]−1
(

max
j

[√2B̃n ◦ 	n(Ij )] − [√2B̃n ◦ 	n(Ilk )]
)

+ oP(1)

in distribution, for some sequence of Brownian bridgesB̃n. By (14) and Lemma 1 it follows
that conditionally onN = n,

Dlk = [Tn]−1
[
max
j

Bn ◦ 	n(Ij )− Bn ◦ 	n(Ilk )

]
+ oP(1). (21)

ThusD(B)
lk

and
√

2Dlk have the same limiting distribution and the first assertion follows. The
second assertion follows by subtracting (21) from (20) followed by arguments analogous
to those given in the proof of Theorem 1 (iii).�

Proof of Theorem 2. Consider firstC̃(P)c and assume thatIlk ∈ S∗
k . As in the proof of

Theorem 1, we may condition onN = n and start from representation (14). According to
(8), sincedlk = 0 whenIlk ∈ S∗

k , and by (18) it follows that

Dlk �
maxj Bn ◦ 	(Ij )− Bn ◦ 	(Ilk )

[maxj P(Ij )]1/2
+ oP(1)

=:D̃∗
lk

+ oP(1)

on a suitable probability space. Since, by Theorem 1,Dlk −√
2 log k is stochastically not

larger than a normalN(0,1) random variable, the remainder term may be neglected and
quantiles ofD̃∗

lk
provides critical values satisfying (4). In order to establish (4) also forD̃lk

it suffices to show that̃D∗
lk

− D̃lk = oP(1) asn → ∞, which follows from (12) and (13) by
applying again (18).

The arguments concerning̃C(P) are analogous. �
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6.2. The kernel-based approach

Lemma 2. Assume that� ∈ L�(�). Then for anyt ∈ S�, small enoughh and conditionally
onN = n

|�(t)− E�̂n,h(t)|��h
∫ 1

−1
|u||K(u)| du.

Proof. The result follows by bounding

|�(t)− E�̂n,h(t)|� 1

h

∫
|K

(
t − s

h

)
||�(t)− �(s)| ds. �

Proof of Theorem 3. Consider again the coverage probabilities conditionally onN = n

and letn → ∞. We will first derive an upper bound for

an
maxt �̂n,h(t)√
maxt �̂n,h(t)

= an

√
max
t

�̂n,h(t),

wherean := (nh/
∫ 1
−1K

2(u)du)1/2. By using Theorem 3.1 ofBickel and Rosenblatt
(1973), we obtain that

max
t

�̂n,h(t)��m +
√

2�m log h−1

nh

∫ 1

−1
K2(u)du+ o([nh]−1) a.s.

By Taylor expansion and the above bound it follows that

an

√
max
t

�̂n,h(t)�an
√

�m + 1

2

√
2 log h−1 + o((nh)−1/2). (22)

Assume now thatx is a point where� attains its global maximum and consider

�̂n,h(x)= �m + (�̂n,h(x)− E�̂n,h(x))+ (E�̂n,h(x)− �m)
=: �m + T1,n + T2,n.

According to the classical central limit theoremT1,n/(Var[T1,n])1/2 → N(0,1) in distribu-
tion. Since maxt �̂n,h(t) → �m >0 in prob., and by a standard approximation of Var�̂n,h(x)
we obtain that

nhVar[T1,n]
maxt [�̂n,h(t)]

∫ 1
−1 K

2(u)du
→ 1 in probab.,
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and therefore an√
maxt �̂n,h(t)

T1,n → N(0,1) in distribution. Furthermore, by Lemma 2

T2,n��hck, and according to (B3)

an
�̂n,h(x)+ bh√
maxt �̂n,h(t)

�an
√

�m − 1

2

√
2 log h−1 + T ∗

1,n + oP(1).

Thus Theorem 3 follows. �
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