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Abstract

Identifying times or time intervals when the intensity function of a Poisson process is maximal
is important in a variety of practical problems, for instance in traffic control or with planning issues
involving customer arrivals or accident occurrences. For this purpose, we propose confidence sets that
are intuitive and easy to obtain, which makes them practicable for a quick exploratory data analysis.
They may also be used in the context of mode estimation for probability densities. In the current
literature, confidence sets for the mode are based on the assumption of an—at least locally—unique
mode. In contrast, our approach retains the coverage probability even if the underlying intensity or
density has a flat top. We even allow the intensity to be constant in the extreme.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Various practical phenomena lead to realizations of inhomogeneous Poisson processes.
A frequent goal is to obtain information concerning the unknown intensity function. For
this purpose nonparametric estimates for intensities have been proposed by several authors,
including Diggle (1985) Diggle and Marron (1988)and Leadbetter and Wold (1983)
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Applications have been considered, e.g., to data concerning the occurrence of explosive
volcanism Solow, 199} and to coal mining disaster occurrenc&ggle and Marron,

1989. In these applications, a strong dependence of the estimates on the bandwidth has
been observed which makes them difficult to interpret. It is therefore of interest to find
out whether interesting properties of the estimated intensity are mere artifacts or actually
present. For this purpos€owling et al. (1996)proposed methods to construct uniform
confidence bands. They investigate the classical coal mining disaster daBafseed,

1953; Cox and Lewis, 1966and use the fact that the lower confidence bound at the
year 1870 exceeds the upper confidence limit after 1900 to confirm a decrease in disas-
ter occurrence after 1900. Instead of this indirect approach, we focus on the direct con-
struction of interval estimates for the point(s) where the intensity is maximal. Possible
applications of such interval estimates include the identification of times where customer
arrivals, accident occurrences or traffic intensities are typically maximal. An illustrating
application to ship arrival data at Keelung harbor (Taiwan) will be discussed in more detail
in Section 5.

As detailed below, our considered problem is related to that of mode estimation for
probability densities. Mode estimation has been considered by several authors. Here, we cite
only some of the relevant literature. For unimodal densiRaszen (1962 hernoff (1964)
Romano (1988)andGrund and Hall (1995nvestigate the use of mode estimates based on
kernel density estimates. More recently, mode trees have been propobtdrutte and
Scott (1993xs visual tools for identifying possible modd&innotte et al. (1998yonsidered
“mode forests” as a possible robustification of mode trees. Finally, tests for unimodality
or, more generally, concerning the number of modes have been investigated for instance
by Hartigan and Hartigan (1985%ilverman (1981)Mammen et al. (19923s well as by
Cheng and Hall (1998While all proposed methods assume either one or a finite number
of modes, our proposed confidence sets also work with densities and intensities that have a
flat top. The assumption of a finite number of extremal points is frequently reasonable in the
density estimation context, but itis unclear whether the assumption is justified in the context
of Poisson processes, where periods of constant intensity often seem plausible. Therefore,
we do not assume unimodality and even admit the possibility of a constant intensity in the
extreme case. With multiple modes, our proposed confidence sets identify those that are
global extremes.

We will now state our problem more formally. Assume that we observe aninhomogeneous
Poisson procesk (¢) on a time interval0, m] whose intensity function*(¢) has period 1.

While periodic intensities are encountered in many situations (think e.g. of daily, monthly
or yearly fluctuations), the assumption of periodicity is not essential in the derivation of
asymptotic coverage probabilities. It is easy to verify that our asymptotic results can also
be obtained by considering = /u for some density: and letting/ — oo, an approach
chosen e.g. iCowling et al. (1996)

Our goal is to construct confidence sétdor the point(s) where the intensity function
A* is maximal using theV = X (m) observed jump points of (1) on [0, m]. Let S denote
the argmax set of*, i.e.

S = {t € [0,1]: 2*(t) = sup/l*(s)} .
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To avoid trivialities, assume furthermore thdtis not a.e. equal to zero. Then the intensity
density
2t
=D o<i<,
fO A¥(s)ds

is well defined and both* and.. share the same argmax-sefThus one may equivalently
construct confidence sets for the argmax set.ofo ensure wide applicability, we will
derive our confidence sets under fairly weak smoothness conditions and assurmés that
locally (in a neighborhood af) Lipschitz continuous, i.e. that there gfende > 0 such
that

[A(t) — Au)| <Pt —u| forallt,ueS,, Q)

whereS; := | J,cg U (t) andU;(t) := (t — ¢, t + ¢). This permits the underlying intensity
to exhibit kinks. Assume furthermore

sup  A(s) < Ay (2
s€[0,1]\S,
with 4,, := maxy<s<14(s), a condition satisfied automatically for continuous intensities.
We will denote the class of all intensity densities satisfying (1) and (2) J3§).
Our goal is to construct confidence sets that have the correct asymptotic coverage prob-
ability, i.e. that satisfy

liminf Pt € C)>1—a foranyreS. 3)

To keep notation simple, the dependenc€ah mis suppressed here and subsequently.

Often each period of observati¢h i + 1] can be partitioned into equally spaced subin-
tervals/; (1< j<k) chosen to have natural interpretations. (Think of days, hours, etc.) In
such a situation, it is often of interest to identify those intervals where the expected number
of occurrences of events is maximal. Consider for instance our example on ship arrivals,
as discussed in Section 5. If a more uniform distribution of ship arrivals is desired, a first
step to achieve this would be to discourage ship arrivals during peak hours, for instance by
increasing the harbor fees. Similar goals are of interest in traffic control. To achieve this,
the following alternative confidence requirement is useful. Let

S = {U I : ,/11 ﬁ(s)ds:lg’]aé(k /1,- )n*(s)ds}~

SV
Then the requirement

liminf P(f;, € C)>1—o for any nonrandom sequendg € S; 4)
oo

m—

provides confidence sets for those time intervgleshere the expected cumulative intensity

A*(s)ds

I/k

is maximal.
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In the following, we propose confidence sets both for conditions (3) and (4). We consider
fast and simple construction rules, based either on a partition of the observation interval or
on kernel density estimates in Sections 2 and 3, as well as more elaborate confidence sets
that use simulated quantiles.

The confidence sets are constructed by first considering the problem conditidnalian
and then transfering the obtained resultsifor> oo back to the original Poisson model
by applying the strong law of large numbers &n It can thus be immediately verified
that our results carry over to the density estimation context when i.i.d. observations are
available.

Section 4 contains a simulation study in which the proposed confidence sets are com-
pared and the actual coverage probabilities are investigated both for smooth and nonsmooth
intensities. We look into the effect of data-based bandwidth selection, and the issue of
undersmoothing versus the use of estimates for the Lipschitz beuit also compare
the proposed confidence sets to sets obtained by using uniform confidence bands. For this
purpose, we consider bootstrap confidence bands proposedwiing et al. (1996)as
well as the uniform bands proposedHigll and Titterington (1988hat do not assume any
smoothness besides Lipschitz continuity.

2. The partitioning approach

Consider the partitioty, I, ..., I of [0, 1], wherel; = ((j —1)/k, j/k]for 1< j <k.
In practical applications, it is often natural to chodssuch that the resulting intervalg
correspond to easily interpretable units, like days or hours. Since the achievable resolution
depends also on the amount of available data, we aséumée an increasing function
of N.

Let

m—1

Nj=>"[XU+j/k)— XU+ (—D/h)]
1=0

denote the number of jumps falling into eitigror one of its translates +1. Our proposed
confidence sets are constructed to contain all those subintdjvalsere N; is within a
certain distance of max ; < N;. For this purpose, we use the statistics

maxi<j<k Nj — N
l:
(max < j <k N2

and

DF — maxi<j<k Nj — N —ka/(Zkz)
! (maxy < j <k N2 ’

whereby, is an estimate of the Lipschitz constghtlefined in (1). Possible choices kyf
will be discussed later in this section.
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More specifically, our confidence set for the regions of maximum cumulative intensity
is defined as

cP = ®)

Jj€Je

with Jo = {l : D;<q(k,1— )} andg(k,y) = (2log k)¥2 + o~1().
A confidence set for the maximizers of the intensity itself is provided by

cP — U 1j,

jeJ

whereJ = {l : D <q(k,1— o)}.

Statements (i) and (ii) of Theorem 1 below imply immediately that the confidenc@géts
andC P guarantee the desired coverage probabilities (4) and (3) asymptotically. Moreover,
it is shown that the coverage probabilities are attained exactly in the limit for constant
intensities and for intensities whefecontains an interval. We need the following rather
weak assumptions.

(A1) GivenN =n the number of cell =k (n) is chosen such that— oo andnk~1 — oo
asn — oo. .

(A2) %90,% — 00, andk(lo+") — 0asn — oo.

(A3) L€ L:(P).

(A4) The estimatey;, of § satisfiesf — by)(N/k3)Y? — 0 in prob.

Theorem 1. Suppose that assumptio(sl)—(A3) hold and that the below mentioned se-
quences; do not depend on random quantities other than

(i) Ifthe sequencé, satisfies/;, e S; for all k, then
lim inf P(D;, — [2logk]Y?<x)>®(x) for arbitrary x.
m— 00

(i) If I is chosen such thdj, N S # @ for all k, and additionally(A4) holds then

lim inf P(D}: — [2logk]"?<x)>®(x) for arbitrary x.
m-—00

(i) Finally, if the argmax sef of 2* contains an intervaland for sequencds such that
I, NS # ¢ forall k, thenlim,, . o P(Dy, — [2logk]Y/? < x) = ®(x) for arbitrary x.

The proof of the result can be found in Section 6, an alternative proof could be given by
directly approximating the Poisson by the normal distribution.

According to Theorem 1, the bias estimate should satiafyk3)Y?(b, — ) — 0 for
C® andC® to satisfy (3). Obviously, ik is chosen such tha¥ / k2 remains bounded,
any consistent estimaig of f§ satisfies the required condition. Uniformly consistent kernel
estimates of the derivative (see for instaBdgerman, 197Bare an obvious choice to obtain
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an estimatey, but they require sufficient smoothness to work. Alternatively, a consistent
estimate off is obtained by taking the maximal differences

pmax: |20 (tit1) = 2 )]/ (tit1 — i) (6)
of kernel density estimateag_h(-) onagridey, ..., ty(n) Of shrinking maximal width, again

with the accuracy depending on the smoothness of

A further alternative approach that does not require estimgtiago sety =0 and make
the bias negligible by undersmoothing. This is done by chodsiugh thatvk =3 — 0'in
probability. This approach has been proposed for instan€awling et al. (1996)

All these methods to deal with bias carry over to the confidence sets of Section 3 that are
obtained via kernel estimates.

While the above-mentioned confidence sets satisfy our asymptotic requirements, they
turned out to be quite conservative in our simulations. Despite Theorem 1 (iii) this is true
even with uniform intensities at least for our considered sample sizes. Similar effects occur
when uniform confidence bands for density and intensity functions are based on asymptotic
expansions such as those propose@irkel and Rosenblatt (197.3)

In order to improve the actual coverage probabilities of uniform confidence bands, the
use of bootstrap has been proposediowling et al. (1996)Whereas the bootstrap seems
to provide good results in this context, analogous resampling methods do not work when
applied toD; or D}. Similar problems have been observed in several situations related to
hypothesis testing. (See eRpran, 198@®r Hinkley, 1987, 1989 As a counter-example in

our situation, consider constant intensities. In this case the pivotal qu@@ti-t:;ﬁ/gdY A,
where

5,(2) = (mtax A1) — /l(s)) /(mtax A(r))l/z,

equalsDy,, andD;, — [2logk]Y/? — N(0, 1) in distribution according to Theorem 1 iii).
Let nole(kB) denote the bootstrap statistic obtained by resampling from the observed jump
points. This is equivalent to resampling method aivling et al. (1996)According to

the proposition below, bootstrap fails since neither the distributioD,(kgf — [2logk]Y/?
nor that ofDl(kB) — Dy, approaches the correct limiting distribution.

Proposition 1. AssumgA1l), that is constant and that?**/n — 0for somex > 0.Then
for arbitrary sequencek, conditional onN = n, and forn — oo

D{® — 2[log k]*? — N(0,2) in distribution
and

Dl(kB) — D, — (2—+/2)[log k1Y% — N(0, 1) in distribution

While further resampling methods have been propose@awling et al. (1996)the
essential arguments of the proof do not depend on the specific resampling method. The main
reason for the bootstrap failure turns out to be that the bias of the estimate of@as not
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approximated consistently. An alternative approach would be tenuset of n bootstrap

that is known to work in many situations where the classical bootstrap fails. (S@&sckel.

etal., 1997) It turns out however, that standard consistency results that ensure consistency
of subsampling like those given in Section 2.2Ridlitis et al. (1999pare not applicable

in our situation. A further alternative approach would be the bootstrap from a smoothed
version of the empirical distribution functioRomano (1988pbserved that smoothing can
overcome inconsistency when bootstrapping the mode directly. A similar approach has been
taken byZiegler (2001)n the regression context.

We do not explore the possibilities of subsampling and smoothed bootstrap further here,
but propose to replace the quantitg, 7) used in the definition o€ andC® by the
quantilesj (k, y) obtained by applying the below stated algorithm. The resulting confidence
sets will be denoted b§<", and¢®), respectively.

Algorithm.

1. Assuming that our sample includegump points, calculate the empirical distribution
function A,, for the jump pointsXy, ..., X, taken modulo one.

2. Calculate; = A,(i/k) for 0<i<k. (tp =0) Lets; =¢; — t;_1 for 1<i <k.

3. Take k normal random variablgs, ..., Y, such thaty; ~ N(O,s;) and letY* =
> 1<i<iYi- Calculate

B — maxy < j <« (Y —SjY*) — (Y; — s5iY%)
I (max; Sj)l/2

4. Repeat step 3 several (e.g. 10,000) times and calculate the empirical quaitile)
of D;. The quantileg* can be used as replacementygk) to decide on the inclusion
of intervali into J. Notice that this quantile has to be calculated separately for ieach
(1<i <k).

The algorithm provides a normal approximation for under the null hypothesis as-
sumption that'; N S # #. More specifically, it is easily verified that fo¥ = n,

- maxj BoA,(I;) — B o A,(I;)
D; = ' 1172
[max; P, (1;)]

s

where A,, denotes the empirical distribution function of the jump pointsxaf) taken
modulo 1, andB denotes a standard Brownian bridge that is independesy, of

Theorem 2. Under assumptiongA1)—(A3), the confidence seéép) satisfy requirements
(4), and under(A1)—(A4) CP satisfieq3).

3. The kernel-based approach
With the jump pointsX; € [0, 1] (1<i < N) of the inhomogeneous Poisson process
X (1) taken modulo 1, the classical kernel density estimateisfdefined as
N

j, ( ) 1 K X — Xl‘
X) = — s
e Nh i=1 h
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whereh depends orV. To improve estimation at the boundarieg0f 1], the periodicity
of the intensity function can obviously be exploited.
Under the assumptions of Theorem 3 below, a leveld confidence set is given by

Nh(N max ) — bph
C(K):{x: . (N) X AN.h (1) ! N,h(xiz WK a1 —
Jo1 K2() du (max; Ay ()"
)
wherecg = f_ll |u||K (u)| du. Again b, denotes an estimate ¢ see Section 2 for a

discussion of possible choices fgr. Furthermore (i, 1—a)=(2log h~ )2+ &1 (1—w).
In order to investigate the coverage probabilities we need the following assumptions.

(B1) The bandwidth sequenge-i(n)is chosen suchthat=h(n) — 0 a”dmgnZd — 0.

(B2) The kernel is chosen to be Lipschitz continuous and to have sugdpedtt 1].
(B3) The estimateéy, of f§ satisfies(f — bk)(Nh3)1/2 — 0in prob.

Theorem 3. Under assumptiongA3) and (B1)—(B3)the confidence sets'X) satisfy(3)
asm — oo.

Arguments analogous to those of the proof of Theorem 2 can be used to show that the
crude approximation(k, 1—«) may be replaced by the following more accurate simulation-
based bound. LeY (1) = h=Y2 [ K[(t — 5)/h]1dB o F,(s). Then, givenN = n, replace
q(h, 1 — a) by the 1— o quantile of

1 max Y (t) — Y (x)
21 K2y du (max Ay (1) Y2

For practical convenience, the Brownian bridgjean be replaced by the uniform empirical
process based onobservations.

Another practical issue is the selection of the bandwidtBandwidth selection in the
point process context and its analogies to density estimation is discussed in some detail
in Diggle and Marron (1988)From practical point of view, it seems attractive to choose
the same bandwidth for intensity estimation and confidence sets. This avoids (optical)
contradictions between the curve and interval estimate, even though larger bandwidths are
usually recommended for mode estimation given a sufficiently smooth underlying density.

4. Simulation results

We conducted a simulation study to investigate the performance of our proposed confi-
dence sets and to compare them with sets constructed indirectly from uniform confidence
bands by taking all points at which the upper confidence band exceeds the maximal value
of the lower confidence band. As competitors, we considered the bands propdded by
and Titterington (1988yvhich require only Lipschitz continuity to be valid, as well as the



A. Futschik, W.-T. Huang / Journal of Statistical Planning and Inference 134 (2005) 549 -56%57

resampling based bounds @pwling et al. (1996}hat have been derived under further dif-
ferentiability assumptions. More specifically, resampling method@oefling et al. (1996)
has been used in connection with their confidence bafidand their bias correction via
undersmoothing.

We considered six different intensity functions[@n1] of different degree of smoothness

and flatness. The corresponding densitigso, . . ., gs are displayed below.
2.0 2.0
1.5 1.5
1.0 4 1.0
0.5 1 0.5
oo oo~
00 02 04 06 08 1.0 00 02 04 06 08 1.0
gl g2
2.0 2.0
1.5 1.51
1.0 1.0
0.5 1 0.5
oo, v _ 1 oo~ A
00 02 04 06 08 1.0 00 02 04 06 08 1.0
g3 g4
2.0
2.0
1.51
1.5,
1.0
1.0
0.51 0.5
oo, oo
00 02 04 06 08 1.0 00 02 04 06 08 1.0
g5 g6

We have takemv = 200 as well agv = 500 as expected numbers of Poisson jumps and
500 simulation runs have been carried out for each intensity. In all simulations, the coverage
probability has been chosen equal to 0.90.

Both for the partitioning and kernel-based approach, we considered the quick and easy
asymptotic critical valueg(k, 1— o) andq (h, 1—a), as well as their simulation-based mod-
ificationsq*(k, 1 — o) andg™*(h, 1 — o). The Lipschitz boung® has been estimated accord-
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ing to (6). Alternatively, we considered an undersmoothing approach propo€asivimg

et al. (1996)and replaced the bandwidthgcell widthsk) by i/2 (k/2) when calculating
simulation-based critical values. With the kernel estimates, we chose the Epanechnikov
kernel and bandwidths by least-squares cross-validatioBreeds and Marron (19910

fixed number of cells{= 10 for N =200 andk = 20 for N = 500) has been used with the
partitioning approach.

The results are summarizedTable 1 It turns out that all of our proposed confidence
sets outperform those based on uniform confidence bands considerably. The replacement
of ¢ (k, y) by ¢*(k, y) reduces the size of the confidence sets, and bias correction by under-
smoothing provides a further significant improvement. According to our simulations, the
coverage probability has been met in all considered situations, except for slight violations
that turned up in some cases with the uniform intengityVith g1, the minimum empirical
significance level was 0.86 and occurred v@dY and forN =200. For all other intensities
the empirical coverage probabilities have always been above the desired value.

The results were analogous both for smooth and nonsmooth intensities. Very often the
partitioning approach worked better than the confidencagéts(and modifications) based
on kernel estimates. This turned out to be the case when the inverse of the number of cells
1/k was smaller than the average bandwidth provided by cross-validation, suggesting that
small bandwidths should be desirable with respect to the size of our confidence sets. We
plan to investigate this issue in future empirical work.

5. Application

One motivation of our paper has been the analysis of ship arrival data at Keelung harbor
(Taiwan). In totah =79, 872 arrivals have been recorded between July 1988 and June 1998.
To provide information for personnel and harbor fee planning, our goal has been to identify
time periods where the arrival intensity is maximal. For this purpose, we considered both
daily and monthly fluctuations. For the monthly fluctuations, we assumed the intensity to
be periodic with a period length of one year. This seems reasonable after correcting for the
Chinese New Year vacation in late January or February (depending on the year), when the
arrival intensity is typically lower. We considered each month separately and present results
for January as an example. Based on a total of 6422 arrivals in JaRirg,displays an
estimate of the arrival intensity with multiple local extremes. We used the Epanechnikov
kernel with bandwidttkz = 1, the wiggles are caused by the daily fluctuations.

Below we give the confidence settép) and Cép) for the maximal average intensity
based on a daily partition. The corresponding binned arrivals can be fouid.i& (Di-
vide by 10 to obtain average cumulative daily arrivals.) As coverage probability, we have

chosen 1— o = 0.95. As in our simulation ~ép) provides the smaller confidence sets.

Confidence Included days Percentage of
set type cells included
cP 2-7,9-26 31 81

cP 2-6,10, 11, 13-15 17, 19-21 48




Table 1

>

Average sizes of confidence sets over 500 simulation runs for intensity degsitegg B
c

Kernel based Partition based Avg. intensity Uniform conf. bands §

H

n c(&) (&) ¢ c®P ¢ ctP cP ciP cHD c(CHP) g
-

I

81 5
200 1.00 0.99 0.88 1.00 0.98 0.90 0.99 0.86 1.00 1.00 a
500 1.00 0.99 0.89 1.00 0.97 0.89 0.99 0.86 1.00 1.00 o
2

g2 5
200 0.83 0.66 0.47 0.74 0.55 0.37 0.53 0.36 1.00 0.99 =
500 0.59 0.49 0.34 0.58 0.39 0.29 0.47 0.30 1.00 0.82 [4)
2

=

83 =8
200 0.81 0.68 0.46 0.89 0.67 0.38 0.56 0.37 1.00 1.00 2
500 0.66 0.55 0.35 0.66 0.48 0.32 0.49 0.33 1.00 0.99 §
E)

g4 a
200 0.90 0.76 0.55 0.75 0.58 0.44 0.58 0.43 1.00 0.99 2
500 0.70 0.61 0.44 0.62 0.45 0.38 0.54 0.38 1.00 0.87 o
>3

o)

g5 g
200 0.91 0.77 0.57 0.79 0.59 0.43 0.60 0.42 1.00 0.99 3
500 0.71 0.62 0.43 0.64 0.46 0.38 0.55 0.38 1.00 0.90 5
S

26 S
200 0.74 0.59 0.36 0.80 0.59 0.30 0.47 0.31 1.00 1.00 é::
500 0.55 0.45 0.25 0.55 0.39 0.25 0.39 0.26 1.00 0.92 @
LO

Confidence set6() use asymptotic critical values.-), the set<" use simulated critical valueg*(-), the index(-),, refers to bias correction by undersmoothing. Theo.,
setc(HT) is based on uniform confidence bands accordingab and Titterington (1988)wherea$‘(CHP) makes use of resampling based uniform confidence bancﬁ
according taCowling et al. (1996)
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Fig. 1. Estimated intensity function for ships arriving at Keelung harbor in January.
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Fig. 2. Average daily number of ship arrivals in January.

With a bandwidth of 1 (day) and the undersmoothing approach, the kernel-based approach
provided a still smaller confidence set, including only 21% of the month. The reason of the
improvement can be found in the tendency to exclude less popular arrival times during a
day when the kernel estimate is evaluated on a fine enough grid.

A look at the histogram of hourly arrivals ffig. 3 (cumulative over the whole dataset)
reveals high arrival intensities in the morning hours. Both partitioning-based confidence sets



A. Futschik, W.-T. Huang / Journal of Statistical Planning and Inference 134 (2005) 549 -56%61

8000 - -

6000 - |

4000 -+ T

2000 -

0 6 12 18 24

Fig. 3. Total number of arrivals for each hour in the dataset.

c? andcP single out the hour of 9:00-10:00 a.m. as the period of maximum intensity.
This is maybe not surprising in view of the harbor fee policies that include an extra day of
harbor fees for ships arriving before 9:00 a.m., causing affected ships often to wait before
entering the harbor.

6. Theory

This section contains the proofs of the presented results. The proofs utilize the fact that
conditionally onN = n, the jump pointsX ; have the same joint distribution as the order
statistics of a sample af independent observations, . . ., X,, from density.

For later use, let1 and P be the cumulative distribution function (cdf) and probability
measure belonging ta Let furthermored, (and R,) be the empirical distribution function
(and measure) of a sample of sizérom . Also, letA, =/n(A, — A) andP, =/n(P, —

P) denote the corresponding empirical processes. Ddfjjé) := B,(b) — B, (a) for
Brownian bridges3, and intervald =[a, b]. For A, letas usuall,, (1) =[4,(a), A,(b)].
We first focus on the partitioning approach.

6.1. The partitioning approach

Lemma 1. On a suitable probability spa¢e¢here is a sequence of Brownian bridgBs
such thatfor arbitrary sequences of partitioRs. . ., Iy, for arbitrary sequencel =li
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and asn — oo

max P, (I;) — Py(Iy) <dj, +n~ "2 [max By o A(Ij) — By o A(Izk)}
J J

2
+0 (“Og’—”)) a.s. ®)

n

Furthermore

Max Py (1) = Pu(ly) <di, + n~1/? [mjax By o Ay(Ij) — By o An(lzk)] + Ry, (9)

2 1/4
whered;, = max; P(I;) — P(I;,) andR, = O [M‘M] a.s For constant

n

intensitiesd;, = 0, and” <" may be replaced by="in (8) and(9).
Proof. Itis verified immediately that
max P, (1;)—P, (I1,) < max P(I;)— P (lj)+n~"/? <max ﬁn(l,-)—?’n(lzk)> (10)
J J J

with equality for constant intensities.
According to the strong approximation duekomlos et al. (1975)there is a sequence of
Brownian bridges,, on a suitable probability space such that lim sld, — B, o A o, =

2
o} (“—‘i%?) a.s., and therefore

max P, (1;) — P, (I;,)=max B, o A(I;) — By o A(I},)
J J

+0 (mﬁ—/’;)z> as. (12)
This gives (8). To show (9) notice that
max B, o A(Ij) — B, o A(I;,)=max B, o A,(I;) — B, o A,(1})
: +]O(||B,, oA — B, oAyls0). (12)

But by Theorem 5.1.1 oEsorg and Révész (198Bnd by Theorem 9.25 iKaratzas and
Shreve (1988ix follows that

(13)

n

(log n)%(log log n) e
||Bno/1—B,,o/1,,|OO=O< gn) {09 g”) as. O

Proof of Theorem 1. Obviously it is sufficient to show assertion (i) conditional 8= n.
Since, conditional oV = n,

max < ; P.(I)] — P,
leg\/ﬁ a<j<k [Pe)]—Pu(ly)

, (14)
[Mmaxi < j <k Pu(1;)]Y2
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where2 means equal in distribution, we may equivalently show that

liminf P

n—o00

<ﬁmaxlgjgk [Pn(lj)] - Pn(llk)

(Mmas < <k Pa(IIY2 2'09"”) >ow). (19

Now according to Lemma 1 and fd, € S,

nl/z (ma){Pn(I/)] — Pa (Ilk)>
J

I 2
<max By, o A(I;) — B, o A(I};) + O (%) as. (16)
n

Furthermore, by Theorem 9.25Karatzas and Shreve (1988)

1/2
(@) +0((k logtk)™?) as (17)

lim supmax B, o A(1;) <
k— o0 J

Also B, o A(I;,) is normallyN (0, o?) distributed, where?=A(1;,) (1— A(I},)) =/ / k(1+

o(1)).
For the denominator we have that,

By
[max P, (1;)]~Y2 = max | [P(1;)]~/2 1+rrl/ZM , (18)
J J : P(I;)

with max; P(I;) = Z,/k + O(k—2). Furthermore, leti* be chosen such that, &;+) =
max; P,(/;). Then, RI;«) = 4,/k(1 + op(1)), and according t&horack and Wellner
(1986, p. 542)it follows that

Pullje) _ o k[loik}l/z s

By plugging in the expanded denominator, we get

- maxy < j <k [Pn(I))] — Pa(dy)

<2 log kY2 — v, + op(D), 19
[max.< j <k P (1)1 (21090 b+ 0op(D) (19)

whereV,, = [max; Pn(lj)]‘l/an o A(1,) is asymptotically norma (0, 1) distributed.

To prove assertion (i), notice thaj provides an asymptotically valid bias bound, if
I,NS #49.

For simplicity of notation, we prove assertion (iii) for constant intensities, the case where
S contains an interval is analogous. By Lemma 1, equality holds in (16). Equality for the
denominator follows , sincg,, =1. O
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Proof of Proposition 1. Let P; denote the empirical measure of a bootstrap sample. With
T,; =,/max; P:(I;) andﬁ’Z =/n(P; —P,), we may write

Dl(f)zg (mjax Pi(I;) — F’,';(Ilk))
=[77? (m]ax[ﬁi(lj) +P.UIp] = [Py (L) + ﬁnuzk)]) ,

wher€[T*]~1=+/k(1+Op([(k log k)/n]*?)). Now conditionally on the jumpX 1, ..., X,
and as in Lemma 1, we may use a strong approximation by independent sequences of
Brownian bridgesB, andB;' to obtain
Dl(kB)z[Tn]—l(m]ax[B;l"oAn(Ij)+BnoA,,(Ij)]—[B:o/ln(Ilk)+Bn oA, (Ilk)]>
+0p(1) (20)

which is equal to
(7,171 (maxﬁﬁén o Ay(I)] = N2B, o Anazk)]) +0p(1)
J

in distribution, for some sequence of Brownian bridggsBy (14) and Lemma 1 it follows
that conditionally onV = n,

le = [Tn]_l [max B, o An(lj) —B,o An(llk):| + OP(]-)- (21)
J

Thule(B) and/ile have the same limiting distribution and the first assertion follows. The
second assertion follows by subtracting (21) from (20) followed by arguments analogous
to those given in the proof of Theorem 1 (iii)[J

Proof of Theorem 2. Consider first@ép) and assume thal, € S;. As in the proof of
Theorem 1, we may condition oM = n and start from representation (14). According to
(8), sinced;, = 0 when/;, € S}, and by (18) it follows that

max; B, o A(I;) — B, o A(I},)
[max; P(1;)]Y/?
=:Dj} + op(1)

+op(1)

I X

on a suitable probability space. Since, by Theorem;1,—./2log k is stochastically not
larger than a normaV (0, 1) random variable, the remainder term may be neglected and
quantiles ofD; provides critical values satisfying (4). In order to establish (4) alsdfpr

it suffices to show thaD} — D, = op(1) asn — oo, which follows from (12) and (13) by

applying again (18). ~
The arguments concernir@f” are analogous. (J
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6.2. The kernel-based approach

Lemma 2. Assume that € L.(f5). Then for any € S, small enougth and conditionally
onN =n

. 1
10 = Eha1< B [ K ) .
Proof. The result follows by bounding
N 1
[4(t) — E/Ln‘h(t)|<z / K ( ) [[A(t) — A(s)| ds. 0

Proof of Theorem 3. Consider again the coverage probabilities conditionallyNoa- n
and letn — oo. We will first derive an upper bound for

ma>9 in max (1) W

wherea, := (nh/f_ll K?(u) du)*/?. By using Theorem 3.1 oBickel and Rosenblatt
(1973) we obtain that

2/ log h—1

MaX oy 4 (1) < o +\/
! nh

/ K2(u)du +o([nh]™%) as.

By Taylor expansion and the above bound it follows that

" 1 _
an /mtax I (®) <am/Im + E‘/Z log h=1 + o((nh)~Y/?). (22)

Assume now that is a point where! attains its global maximum and consider

G 0 6) = o+ G (%) = Edp 4 (0)) + (E oy 4 (X) = )
= Im + Ty + Top.

According to the classical central limit theordi’nn/(Var[Tl_,,,])l/2 — N(0, 1) in distribu-

tion. Since max}v,,,h(t) — A > 0in prob., and by a standard approximation of;\/@[(x)
we obtain that

nhVar[Ty ,]
max [ 2, (1)1 1, K2(u) du

— 1 in probab,
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and therefore—%—T7, — N(0,1) in distribution. Furthermore, by Lemma 2
max )vn.h (l)

T2, < Phcg, and according to (B3)

) b !
anM > an/ A — > 2log =t + Ty, + op(D).

Thus Theorem 3 follows. [
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